大数据频道 频道

下一代大数据即时分析架构——IOTA架构

  【IT168 评论】经过这么多年的发展,已经从大数据1.0的BI/Datawarehouse时代,经过大数据2.0的Web/APP过渡,进入到了IOT的大数据3.0时代,而随之而来的是数据架构的变化。

  Lambda架构

  在过去Lambda数据架构成为每一个公司大数据平台必备的架构,它解决了一个公司大数据批量离线处理和实时数据处理的需求。一个典型的Lambda架构如下:

下一代大数据即时分析架构——IOTA架构

  数据从底层的数据源开始,经过各种各样的格式进入大数据平台,在大数据平台中经过Kafka、Flume等数据组件进行收集,然后分成两条线进行计算。一条线是进入流式计算平台(例如 Storm、Flink或者Spark Streaming),去计算实时的一些指标;另一条线进入批量数据处理离线计算平台(例如Mapreduce、Hive,Spark SQL),去计算T+1的相关业务指标,这些指标需要隔日才能看见。

  Lambda架构经历多年的发展,其优点是稳定,对于实时计算部分的计算成本可控,批量处理可以用晚上的时间来整体批量计算,这样把实时计算和离线计算高峰分开,这种架构支撑了数据行业的早期发展,但是它也有一些致命缺点,并在大数据3.0时代越来越不适应数据分析业务的需求。缺点如下:

  ·实时与批量计算结果不一致引起的数据口径问题:因为批量和实时计算走的是两个计算框架和计算程序,算出的结果往往不同,经常看到一个数字当天看是一个数据,第二天看昨天的数据反而发生了变化。

  ·批量计算在计算窗口内无法完成:在IOT时代,数据量级越来越大,经常发现夜间只有4、5个小时的时间窗口,已经无法完成白天20多个小时累计的数据,保证早上上班前准时出数据已成为每个大数据团队头疼的问题。

  ·数据源变化都要重新开发,开发周期长:每次数据源的格式变化,业务的逻辑变化都需要针对ETL和Streaming做开发修改,整体开发周期很长,业务反应不够迅速。

  ·服务器存储大:数据仓库的典型设计,会产生大量的中间结果表,造成数据急速膨胀,加大服务器存储压力。

  Kappa架构

  针对Lambda架构的需要维护两套程序等以上缺点,LinkedIn的Jay Kreps结合实际经验和个人体会提出了Kappa架构。Kappa架构的核心思想是通过改进流计算系统来解决数据全量处理的问题,使得实时计算和批处理过程使用同一套代码。此外Kappa架构认为只有在有必要的时候才会对历史数据进行重复计算,而如果需要重复计算时,Kappa架构下可以启动很多个实例进行重复计算。

  一个典型的Kappa架构如下图所示:

下一代大数据即时分析架构——IOTA架构

  Kappa架构的核心思想,包括以下三点:

  1.用Kafka或者类似MQ队列系统收集各种各样的数据,你需要几天的数据量就保存几天。

  2.当需要全量重新计算时,重新起一个流计算实例,从头开始读取数据进行处理,并输出到一个新的结果存储中。

  3.当新的实例做完后,停止老的流计算实例,并把老的一些结果删除。

  Kappa架构的优点在于将实时和离线代码统一起来,方便维护而且统一了数据口径的问题。而Kappa的缺点也很明显:

  ·流式处理对于历史数据的高吞吐量力不从心:所有的数据都通过流式计算,即便通过加大并发实例数亦很难适应IOT时代对数据查询响应的即时性要求。

  ·开发周期长:此外Kappa架构下由于采集的数据格式的不统一,每次都需要开发不同的Streaming程序,导致开发周期长。

  ·服务器成本浪费:Kappa架构的核心原理依赖于外部高性能存储redis,hbase服务。但是这2种系统组件,又并非设计来满足全量数据存储设计,对服务器成本严重浪费。

  IOTA架构

  在IOT大潮下,智能手机、PC、智能硬件设备的计算能力越来越强,而业务需求要求数据实时响应需求能力也越来越强,过去传统的中心化、非实时化数据处理的思路已经不适应现在的大数据分析需求,我提出新一代的大数据IOTA架构来解决上述问题,整体思路是设定标准数据模型,通过边缘计算技术把所有的计算过程分散在数据产生、计算和查询过程当中,以统一的数据模型贯穿始终,从而提高整体的预算效率,同时满足即时计算的需要,可以使用各种Ad-hoc Query来查询底层数据。

0
相关文章